cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318770 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - j*x^j).

This page as a plain text file.
%I A318770 #8 Apr 03 2019 02:56:13
%S A318770 1,1,1,1,2,2,4,4,8,9,17,19,38,42,80,97,174,208,389,460,826,1049,1790,
%T A318770 2248,3989,4933,8451,11116,18300,23742,40446,51774,85774,115454,
%U A318770 184806,245967,406768,533210,860295,1179570,1850325,2505585,4046594,5407269,8556317,11877833,18327723
%N A318770 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - j*x^j).
%p A318770 a:=series(add(x^(k^2)/mul((1-j*x^j),j=1..k),k=0..100),x=0,47): seq(coeff(a,x,n),n=0..46); # _Paolo P. Lava_, Apr 02 2019
%t A318770 nmax = 46; CoefficientList[Series[Sum[x^k^2/Product[(1 - j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
%Y A318770 Cf. A193196, A204856, A318771.
%K A318770 nonn
%O A318770 0,5
%A A318770 _Ilya Gutkovskiy_, Sep 03 2018