cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318771 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - x^j)^j.

This page as a plain text file.
%I A318771 #7 Apr 03 2019 02:56:08
%S A318771 1,1,1,1,2,2,4,4,7,8,12,14,22,25,37,47,64,81,113,140,191,243,319,408,
%T A318771 540,677,889,1132,1462,1855,2404,3034,3909,4946,6325,7997,10202,12840,
%U A318771 16328,20549,25989,32627,41180,51577,64872,81128,101729,127016,158913,197981,247163,307523,383019
%N A318771 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - x^j)^j.
%p A318771 a:=series(add(x^(k^2)/mul((1-x^j)^j,j=1..k),k=0..100),x=0,53): seq(coeff(a,x,n),n=0..52); # _Paolo P. Lava_, Apr 02 2019
%t A318771 nmax = 52; CoefficientList[Series[Sum[x^k^2/Product[(1 - x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
%Y A318771 Cf. A193197, A206100, A206138, A318770.
%K A318771 nonn
%O A318771 0,5
%A A318771 _Ilya Gutkovskiy_, Sep 03 2018