This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318773 #17 Aug 08 2025 23:29:04 %S A318773 1,3,9,27,81,1,243,6,729,27,2187,108,6561,405,1,19683,1458,9,59049, %T A318773 5103,54,177147,17496,270,531441,59049,1215,1,1594323,196830,5103,12, %U A318773 4782969,649539,20412,90,14348907,2125764,78732,540,43046721,6908733,295245,2835,1,129140163,22320522,1082565,13608,15 %N A318773 Triangle T(n,k) = 3*T(n-1,k) + T(n-4,k-1) for k = 0..floor(n/4), with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows. %C A318773 The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n) and along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in center-justified triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.) %C A318773 The coefficients in the expansion of 1/(1-3*x-x^4) are given by the sequence generated by the row sums. %C A318773 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.035744112294..., when n approaches infinity. %D A318773 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3. %H A318773 G. C. Greubel, <a href="/A318773/b318773.txt">Rows n = 0..120 of the irregular triangle, flattened</a> %H A318773 Zagros Lalo, <a href="/A318773/a318773_1.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 3x)^n</a> %H A318773 Zagros Lalo, <a href="/A318773/a318773.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (3 + x)^n</a> %F A318773 T(n,k) = 3^(n-4*k) * (n-3*k)!/(k! * (n-4*k)!) where n >= 0 and 0 <= k <= floor(n/4). %e A318773 Triangle begins: %e A318773 1; %e A318773 3; %e A318773 9; %e A318773 27; %e A318773 81, 1; %e A318773 243, 6; %e A318773 729, 27; %e A318773 2187, 108; %e A318773 6561, 405, 1; %e A318773 19683, 1458, 9; %e A318773 59049, 5103, 54; %e A318773 177147, 17496, 270; %e A318773 531441, 59049, 1215, 1; %e A318773 1594323, 196830, 5103, 12; %e A318773 4782969, 649539, 20412, 90; %e A318773 14348907, 2125764, 78732, 540; %e A318773 43046721, 6908733, 295245, 2835, 1; %e A318773 129140163, 22320522, 1082565, 13608, 15; %e A318773 387420489, 71744535, 3897234, 61236, 135; %e A318773 ... %t A318773 T[n_, k_]:= T[n, k] = 3^(n-4k)*(n-3k)!/((n-4k)! k!); Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]} ]//Flatten %t A318773 T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3T[n-1, k] + T[n-4, k-1]]; Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]}]//Flatten %o A318773 (Magma) [3^(n-4*k)*Binomial(n-3*k,k): k in [0..Floor(n/4)], n in [0..24]]; // _G. C. Greubel_, May 12 2021 %o A318773 (Sage) flatten([[3^(n-4*k)*binomial(n-3*k,k) for k in (0..n//4)] for n in (0..24)]) # _G. C. Greubel_, May 12 2021 %Y A318773 Row sums give A052917. %Y A318773 Cf. A013610, A027465. %Y A318773 Cf. A304236, A304249 %Y A318773 Cf. A317496, A317497. %Y A318773 Cf. A000244 (column 0), A027471 (column 1), A027472 (column 2), A036216 (column 3). %Y A318773 Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), A304249 (q=2), A317497 (q=3), this sequence (q=4). %K A318773 tabf,nonn,easy %O A318773 0,2 %A A318773 _Zagros Lalo_, Sep 04 2018