A318775 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-5,k-1) for k = 0..floor(n/5); T(n,k)=0 for n or k < 0.
1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 4, 1, 14, 12, 1, 16, 24, 1, 18, 40, 1, 20, 60, 1, 22, 84, 8, 1, 24, 112, 32, 1, 26, 144, 80, 1, 28, 180, 160, 1, 30, 220, 280, 1, 32, 264, 448, 16, 1, 34, 312, 672, 80, 1, 36, 364, 960, 240, 1, 38, 420, 1320, 560, 1, 40, 480, 1760, 1120
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1; 1; 1, 2; 1, 4; 1, 6; 1, 8; 1, 10; 1, 12, 4; 1, 14, 12; 1, 16, 24; 1, 18, 40; 1, 20, 60; 1, 22, 84, 8; 1, 24, 112, 32; 1, 26, 144, 80; 1, 28, 180, 160; 1, 30, 220, 280; 1, 32, 264, 448, 16; 1, 34, 312, 672, 80; 1, 36, 364, 960, 240; 1, 38, 420, 1320, 560; ...
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Links
Programs
-
Mathematica
t[n_, k_] := t[n, k] = 2^k/((n - 5 k)! k!) (n - 4 k)!; Table[t[n, k], {n, 0, 24}, {k, 0, Floor[n/5]} ] // Flatten t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 5, k - 1]]; Table[t[n, k], {n, 0, 24}, {k, 0, Floor[n/5]}] // Flatten
Formula
T(n,k) = 2^k / ((n - 5*k)! k!) * (n - 4*k)! where n >= 0 and 0 <= k <= floor(n/5).
Comments