cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318778 Number of different positions that an elementary sphinx can occupy in a sphinx of order n.

This page as a plain text file.
%I A318778 #54 May 27 2024 15:30:01
%S A318778 1,28,128,300,544,860,1248,1708,2240,2844
%N A318778 Number of different positions that an elementary sphinx can occupy in a sphinx of order n.
%H A318778 Craig Knecht, <a href="/A318778/a318778.gif">33 positions that a flacon occupies in a S4 sphinx - animated.</a>
%H A318778 Craig Knecht, <a href="/A318778/a318778_1.gif">Bottom row surface tension.</a>
%H A318778 Craig Knecht, <a href="/A318778/a318778_1.png">Order Two Sphinx - 28 positions.</a>
%H A318778 Craig Knecht, <a href="/A318778/a318778_2.png">Order three sphinx - 128 positions.</a>
%H A318778 Craig Knecht, <a href="/A318778/a318778_4.png">Various shapes positioned in a order 4 sphinx.</a>
%F A318778 Conjectures from _Colin Barker_, Nov 13 2018: (Start)
%F A318778 G.f.: x*(1 + 25*x + 47*x^2 - x^3) / (1 - x)^3.
%F A318778 a(n) = 44 - 80*n + 36*n^2 for n>1.
%F A318778 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
%F A318778 (End)
%Y A318778 Cf. A279887, A317541, A318897.
%K A318778 nonn,more
%O A318778 1,2
%A A318778 _Craig Knecht_, Sep 10 2018