This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318785 #18 Sep 05 2018 15:12:35 %S A318785 2,4,6,7,10,16,20,26,28,32,38,40,46,52,56,58,62,68,70,76,80,82,86,88, %T A318785 92,94,96,97,112,116,118,122,136,140,142,146,160,170,172,176,178,188, %U A318785 190,202,212,226,230,238,242,248,256,260,266,272,280,290,298,308,316,322,326,338,340,346,352,356,358 %N A318785 Numbers which are prime if each digit is replaced by its 9's complement. %e A318785 32 belongs to this sequence as its 9's complement is 67, which is prime. %o A318785 (Python) %o A318785 nmax=500 %o A318785 def is_prime(num): %o A318785 if num == 0 or num == 1: return(0) %o A318785 for k in range(2, num): %o A318785 if (num % k) == 0: %o A318785 return(0) %o A318785 return(1) %o A318785 def c9(num): %o A318785 s=str(num) %o A318785 l=len(str(num)) %o A318785 n="" %o A318785 for k in range(l): %o A318785 n = n+str(9-int(s[k])) %o A318785 return(int(n)) %o A318785 ris = "" %o A318785 for i in range(2,nmax): %o A318785 if is_prime(c9(i)): %o A318785 ris = ris+str(i)+"," %o A318785 print(ris) %o A318785 (PARI) complement(n) = my(d=digits(n)); for(k=1, #d, d[k]=9-d[k]); subst(Pol(d), x, 10) %o A318785 is(n) = ispseudoprime(complement(n)) \\ _Felix Fröhlich_, Sep 03 2018 %Y A318785 Cf. A061601 (9's complement of n). %K A318785 nonn,base %O A318785 1,1 %A A318785 _Pierandrea Formusa_, Sep 03 2018