This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318791 #25 Feb 11 2025 08:16:12 %S A318791 1523,1301,1097,911,743,593,461,347,251,173,113,71,47,41,53,83,131, %T A318791 197,281,383,503,641,797,971,1163,1373,1601,1847,2111,2393,2693,3011, %U A318791 3347,3701,4073,4463,4871,5297,5741,6203,6683,7181,7697,8231,8783,9353 %N A318791 Prime generating polynomial: a(n) = 9*n^2 - 249*n + 1763. %C A318791 This polynomial (9*n^2 - 249*n + 1763) generates 40 distinct primes in succession from n = 1 to 40. %H A318791 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A318791 From _Chai Wah Wu_, Feb 12 2019: (Start) %F A318791 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. %F A318791 G.f.: x*(-1763*x^2 + 3268*x - 1523)/(x - 1)^3. (End) %F A318791 a(n) = p(41 - 3*n), where p(n) = n^2 + n + 41 is Euler's prime generating polynomial - see A202018 and A005846. - _Peter Bala_, Jun 10 2021 %F A318791 E.g.f.: exp(x)*(9*x^2 - 240*x + 1763) - 1763. - _Elmo R. Oliveira_, Feb 10 2025 %p A318791 seq(9*n^2-249*n+1763,n=1..50); # _Muniru A Asiru_, Dec 19 2018 %t A318791 Array[9#^2 - 249# + 1763 &, 50] (* _Amiram Eldar_, Dec 15 2018 *) %Y A318791 Cf. A005846, A007635, A048059, A202018. %K A318791 nonn,easy %O A318791 1,1 %A A318791 _Arashdeep Singh_, Dec 15 2018