This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318805 #10 Sep 13 2018 04:23:39 %S A318805 1,1,1,1,2,1,1,3,2,1,1,5,4,2,1,1,6,8,4,2,1,1,8,13,9,4,2,1,1,10,22,16, %T A318805 9,4,2,1,1,13,33,32,17,9,4,2,1,1,15,52,57,35,17,9,4,2,1,1,18,76,105, %U A318805 68,36,17,9,4,2,1,1,21,108,178,139,71,36,17,9,4,2,1 %N A318805 Array read by antidiagonals: T(n,k) is the number of inequivalent symmetric nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations. %F A318805 T(n,k) = T(k,k) for n > k. %e A318805 Array begins: %e A318805 =============================================== %e A318805 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A318805 ---+------------------------------------------- %e A318805 1 | 1 1 1 1 1 1 1 1 1 1 1 1 ... %e A318805 2 | 1 2 3 5 6 8 10 13 15 18 21 25 ... %e A318805 3 | 1 2 4 8 13 22 33 52 76 108 150 209 ... %e A318805 4 | 1 2 4 9 16 32 57 105 178 301 490 793 ... %e A318805 5 | 1 2 4 9 17 35 68 139 264 502 924 1695 ... %e A318805 6 | 1 2 4 9 17 36 71 151 303 619 1234 2473 ... %e A318805 7 | 1 2 4 9 17 36 72 154 315 661 1370 2885 ... %e A318805 8 | 1 2 4 9 17 36 72 155 318 673 1413 3034 ... %e A318805 9 | 1 2 4 9 17 36 72 155 319 676 1425 3078 ... %e A318805 ... %t A318805 permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; %t A318805 c[p_List, k_] := SeriesCoefficient[1/(Product[Product[(1 - x^(2*LCM[p[[i]], p[[j]] ]))^GCD[p[[i]], p[[j]]], {j, 1, i - 1}], {i, 2, Length[p]}]* Product[t = p[[i]]; (1 - x^t)^Mod[t, 2]*(1 - x^(2*t))^Quotient[t, 2], {i, 1, Length[p]}]), {x, 0, k}]; %t A318805 T[_, 1] = T[1, _] = 1; T[n_, k_] := (s = 0; Do[s += permcount[p]*c[p, k], {p, IntegerPartitions[n]}]; s/n!); %t A318805 Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Sep 13 2018, after _Andrew Howroyd_ *) %o A318805 (PARI) %o A318805 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A318805 c(p,k)={polcoef(1/(prod(i=2, #p, prod(j=1, i-1, (1 - x^(2*lcm(p[i],p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 - x^t + O(x*x^k))^(t%2)*(1 - x^(2*t) + O(x*x^k))^(t\2) )), k)} %o A318805 T(n,k)={if(n==0, k==0, my(s=0); forpart(p=n, s+=permcount(p)*c(p,k)); s/n!)} %Y A318805 Cf. A318795. %Y A318805 Main diagonal is A316983. %K A318805 nonn,tabl %O A318805 1,5 %A A318805 _Andrew Howroyd_, Sep 03 2018