cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318807 Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both perfect squares.

This page as a plain text file.
%I A318807 #19 Jan 10 2025 12:15:01
%S A318807 1,3,9,22,27,66,70,88,94,115,119,170,198,210,214,217,264,265,280,282,
%T A318807 310,322,345,357,376,382,385,497,510,517,527,594,630,642,651,679,680,
%U A318807 710,729,742,745,782,795,840,846,856,862,889,930,935,966,970,1035,1066
%N A318807 Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both perfect squares.
%C A318807 Let s be the sum of the squarefree divisors of a number m. The sequence lists the numbers m such that s and sigma(m) - s are both a perfect square.
%C A318807 Or numbers m such that A048250(m) and A162296(m) are perfect squares.
%C A318807 The corresponding pairs of squares (s, sigma(m) - s) are (1, 0), (4, 0), (4, 9), (36, 0), (4, 36), (144, 0), (144, 0), (36, 144), (144, 0), (144, 0), (144, 0), (324, 0), (144, 324), ...
%C A318807 The subsequence b(n) where s and sigma(m) - s are strictly positive begins with 9, 27, 88, 198, 264, 280, 376, 594, 630, ... b(n) is not squarefree (subsequence of A013929).
%C A318807 The subsequence c(n) where the ratio r = (sigma(a(n)) - s)/s is an integer begins with 27, 88, 264, 280, 376, 594, 680, 840, 856, 1128, 1240, ... and the corresponding r are 3^2, 2^2, 2^2, 2^2, 2^2, 3^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 5^2, 3^2, 2^2, 7^2, 3^2, 2^2, 11^2, ... It is conjectured that r belongs to A001248.
%H A318807 Robert Israel, <a href="/A318807/b318807.txt">Table of n, a(n) for n = 1..10000</a>
%e A318807 27 is in the sequence because A048250(27) = 4 and A162296(27) = 36 are both a perfect square.
%p A318807 filter:= proc(n) local F, SF, NSF, t;
%p A318807   F:= ifactors(n)[2];
%p A318807   SF:= mul(1+t[1],t=F);
%p A318807   if not issqr(SF) then return false fi;
%p A318807   NSF:= mul((1-t[1]^(1+t[2]))/(1-t[1]), t=F) - SF;
%p A318807   issqr(NSF);
%p A318807 end proc:
%p A318807 select(filter, [$1..2000]); # _Robert Israel_, Sep 05 2018
%t A318807 lst={};Do[If[IntegerQ[Sqrt[Total[Select[Divisors[n],SquareFreeQ]]]]&&IntegerQ[Sqrt[DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]]]],AppendTo[lst,n]],{n,1100}];lst
%t A318807 sdsndQ[n_]:=Module[{d=Divisors[n],sf,nsf},sf=Select[d,SquareFreeQ];nsf= Complement[ d,sf];AllTrue[ {Sqrt[ Total[sf]],Sqrt[ Total[nsf]]},IntegerQ]]; Select[Range[1500],sdsndQ] (* _Harvey P. Dale_, Sep 13 2024 *)
%o A318807 (PARI) isok(n) = {my(sd=sumdiv(n, d, issquarefree(d)*d)); issquare(sd) && issquare(sigma(n) - sd);} \\ _Michel Marcus_, Sep 04 2018
%Y A318807 Cf. A000040, A001248, A013929, A048250, A162296.
%K A318807 nonn
%O A318807 1,2
%A A318807 _Michel Lagneau_, Sep 04 2018
%E A318807 Definition modified by _Harvey P. Dale_, Sep 13 2024