This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318812 #11 Dec 31 2019 06:49:32 %S A318812 1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,6,1,3,1,3,1,1,1,11,1,1,2,3,1,4,1,20,1, %T A318812 1,1,15,1,1,1,11,1,4,1,3,3,1,1,51,1,3,1,3,1,11,1,11,1,1,1,21,1,1,3,90, %U A318812 1,4,1,3,1,4,1,80,1,1,3,3,1,4,1,51,6,1,1 %N A318812 Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n. %C A318812 A total multiset partition of m is either m itself or a total multiset partition of a multiset partition of m that is neither minimal nor maximal. %C A318812 a(n) depends only on the prime signature of n. - _Andrew Howroyd_, Dec 30 2019 %H A318812 Andrew Howroyd, <a href="/A318812/b318812.txt">Table of n, a(n) for n = 1..10000</a> %F A318812 a(product of n distinct primes) = A005121(n). %F A318812 a(prime^n) = A318813(n). %e A318812 The a(24) = 11 total multiset partitions: %e A318812 {1,1,1,2} %e A318812 {{1},{1,1,2}} %e A318812 {{2},{1,1,1}} %e A318812 {{1,1},{1,2}} %e A318812 {{1},{1},{1,2}} %e A318812 {{1},{2},{1,1}} %e A318812 {{{1}},{{1},{1,2}}} %e A318812 {{{1}},{{2},{1,1}}} %e A318812 {{{2}},{{1},{1,1}}} %e A318812 {{{1,2}},{{1},{1}}} %e A318812 {{{1,1}},{{1},{2}}} %e A318812 The a(24) = 11 total factorizations: %e A318812 24, %e A318812 (2*12), (3*8), (4*6), %e A318812 (2*2*6), (2*3*4), %e A318812 ((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)). %t A318812 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A318812 totfac[n_]:=1+Sum[totfac[Times@@Prime/@f],{f,Select[facs[n],1<Length[#]<PrimeOmega[n]&]}]; %t A318812 Array[totfac,100] %o A318812 (PARI) %o A318812 MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v} %o A318812 seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n,2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ _Andrew Howroyd_, Dec 30 2019 %Y A318812 Cf. A000110, A001055, A002846, A005121, A213427, A281113, A281118, A281119, A317145, A318813. %K A318812 nonn %O A318812 1,8 %A A318812 _Gus Wiseman_, Sep 04 2018