cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318812 Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.

This page as a plain text file.
%I A318812 #11 Dec 31 2019 06:49:32
%S A318812 1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,6,1,3,1,3,1,1,1,11,1,1,2,3,1,4,1,20,1,
%T A318812 1,1,15,1,1,1,11,1,4,1,3,3,1,1,51,1,3,1,3,1,11,1,11,1,1,1,21,1,1,3,90,
%U A318812 1,4,1,3,1,4,1,80,1,1,3,3,1,4,1,51,6,1,1
%N A318812 Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.
%C A318812 A total multiset partition of m is either m itself or a total multiset partition of a multiset partition of m that is neither minimal nor maximal.
%C A318812 a(n) depends only on the prime signature of n. - _Andrew Howroyd_, Dec 30 2019
%H A318812 Andrew Howroyd, <a href="/A318812/b318812.txt">Table of n, a(n) for n = 1..10000</a>
%F A318812 a(product of n distinct primes) = A005121(n).
%F A318812 a(prime^n) = A318813(n).
%e A318812 The a(24) = 11 total multiset partitions:
%e A318812   {1,1,1,2}
%e A318812   {{1},{1,1,2}}
%e A318812   {{2},{1,1,1}}
%e A318812   {{1,1},{1,2}}
%e A318812   {{1},{1},{1,2}}
%e A318812   {{1},{2},{1,1}}
%e A318812   {{{1}},{{1},{1,2}}}
%e A318812   {{{1}},{{2},{1,1}}}
%e A318812   {{{2}},{{1},{1,1}}}
%e A318812   {{{1,2}},{{1},{1}}}
%e A318812   {{{1,1}},{{1},{2}}}
%e A318812 The a(24) = 11 total factorizations:
%e A318812   24,
%e A318812   (2*12), (3*8), (4*6),
%e A318812   (2*2*6), (2*3*4),
%e A318812   ((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
%t A318812 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A318812 totfac[n_]:=1+Sum[totfac[Times@@Prime/@f],{f,Select[facs[n],1<Length[#]<PrimeOmega[n]&]}];
%t A318812 Array[totfac,100]
%o A318812 (PARI)
%o A318812 MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
%o A318812 seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n,2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ _Andrew Howroyd_, Dec 30 2019
%Y A318812 Cf. A000110, A001055, A002846, A005121, A213427, A281113, A281118, A281119, A317145, A318813.
%K A318812 nonn
%O A318812 1,8
%A A318812 _Gus Wiseman_, Sep 04 2018