This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318813 #17 Jan 02 2020 08:24:28 %S A318813 1,1,2,6,20,90,468,2910,20644,165874,1484344,14653890,158136988, %T A318813 1852077284,23394406084,317018563806,4587391330992,70598570456104, %U A318813 1151382852200680,19835976878704628,359963038816096924,6863033015330999110,137156667020252478684,2867083618970831936826 %N A318813 Number of balanced reduced multisystems with n atoms all equal to 1. %C A318813 For n > 1, also the number of balanced reduced multisystems whose atoms are an integer partition of n with at least one part > 1. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. - _Gus Wiseman_, Dec 31 2019 %H A318813 Andrew Howroyd, <a href="/A318813/b318813.txt">Table of n, a(n) for n = 1..200</a> %F A318813 a(n > 1) = A330679(n)/2. - _Gus Wiseman_, Dec 31 2019 %e A318813 The a(5) = 20 balanced reduced multisystems (with n written in place of 1^n): %e A318813 5 (14) (23) (113) (122) (1112) %e A318813 ((1)(13)) ((1)(22)) ((1)(112)) %e A318813 ((3)(11)) ((2)(12)) ((2)(111)) %e A318813 ((11)(12)) %e A318813 ((1)(1)(12)) %e A318813 ((1)(2)(11)) %e A318813 (((1))((1)(12))) %e A318813 (((1))((2)(11))) %e A318813 (((2))((1)(11))) %e A318813 (((12))((1)(1))) %e A318813 (((11))((1)(2))) %t A318813 normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; %t A318813 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A318813 totfact[n_]:=totfact[n]=1+Sum[totfact[Times@@Prime/@normize[f]],{f,Select[facs[n],1<Length[#]<PrimeOmega[n]&]}]; %t A318813 Table[totfact[2^n],{n,10}] %o A318813 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A318813 seq(n)={my(v=vector(n, i, i==1), u=vector(n)); for(r=1, #v, u += v*sum(j=r, #v, (-1)^(j-r)*binomial(j-1, r-1)); v=EulerT(v)); u} \\ _Andrew Howroyd_, Dec 30 2019 %Y A318813 The maximum-depth case is A000111. %Y A318813 Cf. A000311, A001055, A002846, A005121, A213427, A281118, A281119, A317145, A318812, A318846, A320154, A330474, A330679. %K A318813 nonn %O A318813 1,3 %A A318813 _Gus Wiseman_, Sep 04 2018 %E A318813 Terms a(14) and beyond from _Andrew Howroyd_, Dec 30 2019 %E A318813 Terminology corrected by _Gus Wiseman_, Dec 31 2019