cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318814 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)/k).

This page as a plain text file.
%I A318814 #11 Feb 28 2024 10:48:57
%S A318814 1,2,10,64,512,4768,53056,645440,8868352,133302016,2184149504,
%T A318814 38530160128,733246566400,14834910150656,319778313883648,
%U A318814 7292507623063552,175517505539538944,4440588163825008640,117969026857318678528,3276703253565946855424,95086071773832697348096
%N A318814 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)/k).
%C A318814 Convolution of A305127 and A318769.
%H A318814 Vaclav Kotesovec, <a href="/A318814/b318814.txt">Table of n, a(n) for n = 0..436</a>
%F A318814 log(a(n)/n!) ~ Pi^2 * sqrt(n/6).
%t A318814 nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A318814 Cf. A000203, A305127, A301554, A301555, A318769.
%K A318814 nonn
%O A318814 0,2
%A A318814 _Vaclav Kotesovec_, Sep 04 2018