cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318842 a(n) is the least integer m such that A047994(m) = ((n-1)/n)*m where A047994 is the unitary totient function, or 0 if there is no such m.

This page as a plain text file.
%I A318842 #24 Dec 23 2024 14:53:45
%S A318842 2,3,4,5,144,7,8,9,400,11,64281600,13,84672,129600,16,17,518400,19,
%T A318842 4327213363200,254016,6326996189184000000,23,300174920860041216000,25,
%U A318842 2747437056,27,3136,29
%N A318842 a(n) is the least integer m such that A047994(m) = ((n-1)/n)*m where A047994 is the unitary totient function, or 0 if there is no such m.
%C A318842 If it is not 0, a(30) > 10^30. - _Michel Marcus_, Sep 08 2018
%H A318842 Yasutoshi Kohmoto, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2018-August/018717.html">UnitaryPhi</a>, SeqFan list, Aug 31 2018.
%H A318842 Michel Marcus, <a href="/A318842/a318842.gp.txt">solve_uphi pari code</a>
%F A318842 a(pp) = pp iff pp is a prime power (A000961) > 1.
%o A318842 (PARI) \\ uses the "solve_uphi pari code", see links
%o A318842 a(n) = {my(lim = 1, v); while (1, v = solve_uphi(n-1, n, lim); if (#v, return (v[1])); lim *= 10;);}
%Y A318842 Cf. A000961 (primepowers), A047994 (unitary totient).
%Y A318842 Cf. A030163, A305678.
%Y A318842 Cf. A145680 (analog with unitary sigma).
%K A318842 nonn,more
%O A318842 2,1
%A A318842 _Michel Marcus_, Sep 04 2018