This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318848 #9 Jun 26 2020 11:46:57 %S A318848 1,1,1,1,2,3,5,4,12,9,12,17,34,29,44,26,92,90,277,68,171,93,806,144, %T A318848 197,309,581,269,2500,428,7578,236,631,1025,869,954,24198,3463,2402, %U A318848 712,75370,1957,243800,1040,3200,11705,776494,1612,4349,2358,8862,3993,2545777 %N A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n. %C A318848 This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A318848 A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts. A tree-partition is complete if the leaves are all multisets of length 1. %F A318848 a(n) = A281119(A181821(n)). %F A318848 a(prime(n)) = A196545(n) %F A318848 a(2^n) = A000311(n). %e A318848 The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x: %e A318848 (1(1(23))) %e A318848 (1(2(13))) %e A318848 (1(3(12))) %e A318848 (2(1(13))) %e A318848 (2(3(11))) %e A318848 (3(1(12))) %e A318848 (3(2(11))) %e A318848 ((11)(23)) %e A318848 ((12)(13)) %e A318848 (1(123)) %e A318848 (2(113)) %e A318848 (3(112)) %e A318848 (11(23)) %e A318848 (12(13)) %e A318848 (13(12)) %e A318848 (23(11)) %e A318848 (1123) %t A318848 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318848 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318848 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A318848 allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m]; %t A318848 Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{_?AtomQ,__}]&]],{n,20}] %Y A318848 Cf. A000311, A001055, A196545, A281118, A281119, A305936, A318762, A318812, A318813, A318846, A318847, A318849. %K A318848 nonn %O A318848 1,5 %A A318848 _Gus Wiseman_, Sep 04 2018 %E A318848 More terms from _Jinyuan Wang_, Jun 26 2020