This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318876 #19 Jul 08 2024 11:57:16 %S A318876 1,1,4,1,6,4,8,1,13,6,12,4,14,8,24,1,18,13,20,6,32,12,24,4,31,14,40,8, %T A318876 30,24,32,1,48,18,48,13,38,20,56,6,42,32,44,12,78,24,48,4,57,31,72,14, %U A318876 54,40,72,8,80,30,60,24,62,32,104,1,84,48,68,18,96,48,72,13,74,38,124,20,96,56,80,6,121,42,84,32,108,44,120,12,90,78,112,24,128,48,120,4,98,57,156,31,102,72,104,14,87 %N A318876 Sum of divisors d of n for which 2*phi(d) > d. %C A318876 Not multiplicative as a(3) = 4, a(5) = 6 and a(7) = 8, but a(105) = 87, not a(3)*a(5)*a(7) = 4*6*8 = 192 = A000593(105). %H A318876 Antti Karttunen, <a href="/A318876/b318876.txt">Table of n, a(n) for n = 1..65537</a> %H A318876 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a> %F A318876 a(n) = Sum_{d|n} [2*phi(d) > d]*d, where [ ] are the Iverson brackets. %F A318876 For all n >= 1, a(n) + A318877(n) + 2*(A006519(n)-1) = A000203(n). %e A318876 n = 105 has divisors [1, 3, 5, 7, 15, 21, 35, 105]. When A083254 is applied to them, all others except the last one result a positive number, thus a(105) = 1+3+5+7+15+21+35 = 87. %t A318876 A318876[n_] := DivisorSum[n, # &, 2*EulerPhi[#] > # &]; %t A318876 Array[A318876, 100] (* _Paolo Xausa_, Jul 08 2024 *) %o A318876 (PARI) A318876(n) = sumdiv(n,d,((2*eulerphi(d))>d)*d); %Y A318876 Cf. A000010, A000203, A006519, A083254, A318874, A318877, A318878. %Y A318876 Cf. also A187793. %Y A318876 Differs from A000593 for the first time at n=105, where a(105) = 87, while A000593(105) = 192. %K A318876 nonn %O A318876 1,3 %A A318876 _Antti Karttunen_, Sep 05 2018