A318898 a(n) = ((-4)^((p-1)/4) - 1)/p, where p is the n-th prime congruent to 1 mod 4.
-1, -5, 15, -565, -7085, 25575, -1266205, -17602325, 941362695, 197665011735, 2901803883615, -11147523830125, -165269711096165, 637677823344495, 2154364271382137415, -126774939137440139965, -1925041114036033717685, -447232673152232758272805, -6839447730858454557453725, 410508614063545790640124095, -1608693655111966245554191885
Offset: 1
Keywords
Examples
The second prime congruent to 1 mod 4 is 13, so a(2) = ((-4)^3 - 1)/13 = (-65)/13 = -5. Also, the four solutions to x^4 == -4 (mod 13) are x == 4, 6, 7 and 9 (mod 13).
Crossrefs
Programs
-
PARI
forstep(p=5, 100, 4, if(isprime(p), print1(((-4)^((p-1)/4)-1)/p, ", ")))
Comments