This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318915 #33 Jul 08 2024 12:50:48 %S A318915 1,1,3,5,11,15,33,41,77,105,173,215,381,449,699,911,1335,1611,2433, %T A318915 2867,4179,5113,6903,8251,11769,13661,18177,22011,28997,33711,45251 %N A318915 Number of joining pairs of integer partitions of n. %C A318915 Two integer partitions are a joining pair if they have no common cover (coarser partition) other than the maximum. For example, (221) and (311) are not a joining pair as they are both covered by (32) or (41), while (222) and (33) are a joining pair. %C A318915 All terms are odd. %C A318915 The same as the number of pairs of integer partitions of n without common subsums. - _Mamuka Jibladze_, Jun 16 2024 %H A318915 P. Erdős, J. Nicolas and A. Sárközy, <a href="https://eudml.org/doc/210135">On the number of pairs of partitions of n without common subsums</a>, Colloquium Mathematicae, 63 (1992), 61-83. %F A318915 a(n) >= 2 * A000041(n) - 1. - _Alois P. Heinz_, Sep 06 2018 %e A318915 The sequence of joining pairs of integer partitions begins: %e A318915 ()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5) %e A318915 (2)(11) (3)(21) (4)(31) (5)(41) %e A318915 (11)(2) (3)(111) (4)(22) (5)(32) %e A318915 (21)(3) (4)(211) (5)(311) %e A318915 (111)(3) (4)(1111) (5)(221) %e A318915 (31)(4) (5)(2111) %e A318915 (31)(22) (5)(11111) %e A318915 (22)(4) (41)(5) %e A318915 (22)(31) (41)(32) %e A318915 (211)(4) (32)(5) %e A318915 (1111)(4) (32)(41) %e A318915 (311)(5) %e A318915 (221)(5) %e A318915 (2111)(5) %e A318915 (11111)(5) %t A318915 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318915 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318915 ptncaps[y_]:=Union[Map[Sort[Total/@#,Greater]&,mps[y],{1}]]; %t A318915 Table[Select[Tuples[IntegerPartitions[n],2],Intersection@@ptncaps/@#=={{n}}&]//Length,{n,6}] %Y A318915 Cf. A000041, A059849, A060639, A181939, A265947, A299925, A300383, A317141, A317143. %K A318915 nonn,more %O A318915 0,3 %A A318915 _Gus Wiseman_, Sep 05 2018 %E A318915 a(13)-a(30) from _Alois P. Heinz_, Sep 05 2018