A318938 If n=0 then 1 otherwise 16*(1+22*A318935(n))*(sum of cubes of odd divisors of n).
1, 368, 3184, 10304, 25712, 46368, 89152, 126592, 205936, 278576, 401184, 490176, 719936, 808864, 1095296, 1298304, 1647728, 1808352, 2410288, 2524480, 3239712, 3544576, 4241088, 4477824, 5766208, 5796368, 6998432, 7521920, 8844928, 8975520, 11233152, 10963456, 13182064, 13724928, 15646176, 15950592, 19463984
Offset: 0
Keywords
Links
- P. J. C. Lamont, The number of Cayley integers of given norm, Proceedings of the Edinburgh Mathematical Society, 25.1 (1982): 101-103. See (7).
Crossrefs
Cf. A318935.
Programs
-
Maple
with(numtheory); A007814 := n -> padic[ordp](n, 2): T:= n -> add(2^(3*m),m=0..A007814(n)); f := proc(n) local t2,i,d; if n=0 then return(1); fi; t2:=0; for d in divisors(n) do if (d mod 2) = 1 then t2:=t2+d^3; fi; od: 16*(1+22*T(n))*t2; end; [seq(f(k),k=0..50)];
-
Python
from sympy import divisor_sigma def A318938(n): return (1+22*((1<<(3*(m:=(~n&n-1).bit_length())+3))-1)//7)*divisor_sigma(n>>m,3)<<4 if n else 1 # Chai Wah Wu, Jul 11 2022