This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318939 #11 Jul 11 2022 14:21:46 %S A318939 1,624,5232,17472,42096,78624,146496,214656,337008,472368,659232, %T A318939 831168,1178688,1371552,1799808,2201472,2696304,3066336,3960624, %U A318939 4280640,5304096,6010368,6969024,7592832,9436224,9828624,11499936,12754560,14481024 %N A318939 If n=0 then 1 otherwise 48*(1+12*A318935(n))*(sum of cubes of odd divisors of n). %H A318939 P. J. C. Lamont, <a href="https://doi.org/10.1017/S001309150000420X">The number of Cayley integers of given norm</a>, Proceedings of the Edinburgh Mathematical Society, 25.1 (1982): 101-103. See (10). %p A318939 with(numtheory); %p A318939 A007814 := n -> padic[ordp](n, 2): %p A318939 T:= n -> add(2^(3*m),m=0..A007814(n)); %p A318939 f := proc(n) local t2,i,d; %p A318939 if n=0 then return(1); fi; %p A318939 t2:=0; for d in divisors(n) do if (d mod 2) = 1 then t2:=t2+d^3; fi; od: %p A318939 48*(1+12*T(n))*t2; %p A318939 end; %p A318939 [seq(f(n),n=0..50)]; %o A318939 (Python) %o A318939 from sympy import divisor_sigma %o A318939 def A318939(n): return 3*(1+12*((1<<(3*(m:=(~n&n-1).bit_length())+3))-1)//7)*divisor_sigma(n>>m,3)<<4 if n else 1 # _Chai Wah Wu_, Jul 11 2022 %Y A318939 Cf. A318935, A318938. %K A318939 nonn %O A318939 0,2 %A A318939 _N. J. A. Sloane_, Sep 15 2018