A318941 Number of Dyck paths with n nodes and altitude 2.
0, 0, 1, 4, 12, 35, 99, 274, 747, 2015, 5394, 14359, 38067, 100610, 265299, 698359, 1835922, 4821695, 12653739, 33188674, 87010587, 228039695, 597501714, 1565251879, 4099826787, 10737374210, 28118587299, 73630970599, 192799490322, 504817832015
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Czabarka, É., Flórez, R., Junes, L., & Ramírez, J. L., Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Mathematics (2018), 341(10), 2789-2807.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,2).
Crossrefs
A column of A318942.
Programs
-
Maple
(1-x)^2*x^2*(1+x)/(1-2*x)/(1-3*x+x^2) ; taylor(%,x=0,30) ; gfun[seriestolist](%) ; # R. J. Mathar, Nov 25 2018
-
PARI
concat([0,0], Vec(x^2*(1 - x)^2*(1 + x) / ((1 - 2*x)*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Apr 09 2019
Formula
From Colin Barker, Apr 09 2019: (Start)
a(n) = 2^(-3-n)*(-3*4^n + 4*(3-sqrt(5))^n*(3+sqrt(5)) - 4*(-3+sqrt(5))*(3+sqrt(5))^n) for n>2.
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) n>5.
(End)
Note that Czabarka et al. give a g.f. for the whole triangle. - N. J. A. Sloane, Apr 09 2019
a(n) = A005248(n-1) -3*2^(n-3), n>=3. [Czabarka, Proposition 5 (2)] - R. J. Mathar, Apr 09 2019