cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318941 Number of Dyck paths with n nodes and altitude 2.

Original entry on oeis.org

0, 0, 1, 4, 12, 35, 99, 274, 747, 2015, 5394, 14359, 38067, 100610, 265299, 698359, 1835922, 4821695, 12653739, 33188674, 87010587, 228039695, 597501714, 1565251879, 4099826787, 10737374210, 28118587299, 73630970599, 192799490322, 504817832015
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Crossrefs

A column of A318942.

Programs

  • Maple
    (1-x)^2*x^2*(1+x)/(1-2*x)/(1-3*x+x^2) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Nov 25 2018
  • PARI
    concat([0,0], Vec(x^2*(1 - x)^2*(1 + x) / ((1 - 2*x)*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Apr 09 2019

Formula

From Colin Barker, Apr 09 2019: (Start)
a(n) = 2^(-3-n)*(-3*4^n + 4*(3-sqrt(5))^n*(3+sqrt(5)) - 4*(-3+sqrt(5))*(3+sqrt(5))^n) for n>2.
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) n>5.
(End)
Note that Czabarka et al. give a g.f. for the whole triangle. - N. J. A. Sloane, Apr 09 2019
a(n) = A005248(n-1) -3*2^(n-3), n>=3. [Czabarka, Proposition 5 (2)] - R. J. Mathar, Apr 09 2019