cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318942 Triangle read by rows: T(n,k) = number of Dyck paths with n nodes and altitude k (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 12, 6, 1, 34, 35, 21, 8, 1, 89, 99, 68, 32, 10, 1, 233, 274, 208, 114, 45, 12, 1, 610, 747, 612, 376, 175, 60, 14, 1, 1597, 2015, 1752, 1177, 620, 253, 77, 16, 1, 4181, 5394, 4916, 3549, 2062, 959, 350, 96, 18, 1, 10946, 14359, 13588, 10406, 6551, 3381, 1414, 468, 117, 20
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Examples

			Triangle begins:
1,
2,1,
5,4,1,
13,12,6,1,
34,35,21,8,1,
89,99,68,32,10,1,
233,274,208,114,45,12,1,
610,747,612,376,175,60,14,1,
1597,2015,1752,1177,620,253,77,16,1,
...
		

Crossrefs

Col. 1 is alternate Fibonaccis, cols. 2, 3, 4 are A318941, A318943, A318944.
Row sums give A038731(n-1).

Programs

  • Maple
    A318942 := proc(n,k) # Theorem 7 of Czabarka et al.
        option remember;
        if k = 1 then
            combinat[fibonacci](2*n-1) ;
        elif n =k then
            1;
        elif n = k+1 then
            2*procname(n-1,k)+procname(n-1,k-1) ;
        elif n >= k+2 then
            2*procname(n-1,k)+procname(n-1,k-1)-procname(n-2,k-1)+combinat[fibonacci](2*n-2*k-2)  ;
        else
            0 ;
        end if;
    end proc:
    seq( seq(A318942(n,k),k=1..n),n=1..12 ) ; # R. J. Mathar, Apr 09 2019
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 1, Fibonacci[2*n - 1], n == k, 1, n == k + 1, 2*T[n - 1, k] + T[n - 1, k - 1], n >= k + 2, 2*T[n - 1, k] + T[n - 1, k - 1] - T[n - 2, k - 1] + Fibonacci[2*n - 2*k - 2], True, 0];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Sep 25 2022, after R. J. Mathar *)

Formula

Czabarka et al. give a g.f. - N. J. A. Sloane, Apr 09 2019