A318942 Triangle read by rows: T(n,k) = number of Dyck paths with n nodes and altitude k (1 <= k <= n).
1, 2, 1, 5, 4, 1, 13, 12, 6, 1, 34, 35, 21, 8, 1, 89, 99, 68, 32, 10, 1, 233, 274, 208, 114, 45, 12, 1, 610, 747, 612, 376, 175, 60, 14, 1, 1597, 2015, 1752, 1177, 620, 253, 77, 16, 1, 4181, 5394, 4916, 3549, 2062, 959, 350, 96, 18, 1, 10946, 14359, 13588, 10406, 6551, 3381, 1414, 468, 117, 20
Offset: 1
Examples
Triangle begins: 1, 2,1, 5,4,1, 13,12,6,1, 34,35,21,8,1, 89,99,68,32,10,1, 233,274,208,114,45,12,1, 610,747,612,376,175,60,14,1, 1597,2015,1752,1177,620,253,77,16,1, ...
Links
- Czabarka, É., Flórez, R., Junes, L., & Ramírez, J. L. (2018). Enumerations of peaks and valleys on non-decreasing Dyck paths. Discrete Mathematics, 341(10), 2789-2807.
Crossrefs
Programs
-
Maple
A318942 := proc(n,k) # Theorem 7 of Czabarka et al. option remember; if k = 1 then combinat[fibonacci](2*n-1) ; elif n =k then 1; elif n = k+1 then 2*procname(n-1,k)+procname(n-1,k-1) ; elif n >= k+2 then 2*procname(n-1,k)+procname(n-1,k-1)-procname(n-2,k-1)+combinat[fibonacci](2*n-2*k-2) ; else 0 ; end if; end proc: seq( seq(A318942(n,k),k=1..n),n=1..12 ) ; # R. J. Mathar, Apr 09 2019
-
Mathematica
T[n_, k_] := T[n, k] = Which[k == 1, Fibonacci[2*n - 1], n == k, 1, n == k + 1, 2*T[n - 1, k] + T[n - 1, k - 1], n >= k + 2, 2*T[n - 1, k] + T[n - 1, k - 1] - T[n - 2, k - 1] + Fibonacci[2*n - 2*k - 2], True, 0]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Sep 25 2022, after R. J. Mathar *)
Formula
Czabarka et al. give a g.f. - N. J. A. Sloane, Apr 09 2019