cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318943 Number of Dyck paths with n nodes and altitude 3.

Original entry on oeis.org

0, 0, 0, 1, 6, 21, 68, 208, 612, 1752, 4916, 13588, 37128, 100548, 270404, 723208, 1925844, 5110644, 13524872, 35713828, 94140900, 247806600, 651572660, 1711695508, 4493475336, 11789439876, 30917835908, 81053196808, 212426303892, 556607396532
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Crossrefs

A column of A318942.

Programs

  • Maple
    (1-x)^2*x^3*(1+x-3*x^2)/(1-2*x)^2/(1-3*x+x^2) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Nov 25 2018
  • Mathematica
    LinearRecurrence[{7, -17, 16, -4}, {0, 0, 0, 1, 6, 21, 68, 208}, 50] (* Paolo Xausa, May 24 2024 *)
  • PARI
    concat([0,0,0], Vec(x^3*(1 - x)^2*(1 + x - 3*x^2) / ((1 - 2*x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Apr 11 2019

Formula

a(n) = 8*A001906(n+1)-20*A001906(n)-2^(n-5)*(16+3*n), n>=4. - R. J. Mathar, Apr 09 2019
a(n) = 7*a(n-1) - 17*a(n-2) + 16*a(n-3) - 4*a(n-4) for n>7. - Colin Barker, Apr 11 2019