A318943 Number of Dyck paths with n nodes and altitude 3.
0, 0, 0, 1, 6, 21, 68, 208, 612, 1752, 4916, 13588, 37128, 100548, 270404, 723208, 1925844, 5110644, 13524872, 35713828, 94140900, 247806600, 651572660, 1711695508, 4493475336, 11789439876, 30917835908, 81053196808, 212426303892, 556607396532
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Czabarka et al, Enumerations of peaks and valleys on non-decreasing Dyck paths, Disc. Math. 341 (2018) 2789-2807.
- Index entries for linear recurrences with constant coefficients, signature (7,-17,16,-4).
Crossrefs
A column of A318942.
Programs
-
Maple
(1-x)^2*x^3*(1+x-3*x^2)/(1-2*x)^2/(1-3*x+x^2) ; taylor(%,x=0,30) ; gfun[seriestolist](%) ; # R. J. Mathar, Nov 25 2018
-
Mathematica
LinearRecurrence[{7, -17, 16, -4}, {0, 0, 0, 1, 6, 21, 68, 208}, 50] (* Paolo Xausa, May 24 2024 *)
-
PARI
concat([0,0,0], Vec(x^3*(1 - x)^2*(1 + x - 3*x^2) / ((1 - 2*x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Apr 11 2019
Formula
a(n) = 7*a(n-1) - 17*a(n-2) + 16*a(n-3) - 4*a(n-4) for n>7. - Colin Barker, Apr 11 2019