This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318968 #6 Sep 07 2018 04:47:14 %S A318968 1,1,1,10,10,635,797,118446,124071,43174194,45404910,25982930761, %T A318968 26443958420,23324558686914,23640266984002,29216576615057082, %U A318968 29447535265299613,48690644491136860817,48980258924147884960,104176334607664412086539,104636388540330684649083,278323070872780066332365486 %N A318968 Expansion of exp(Sum_{k>=1} ( Sum_{d|k, d odd} d^k ) * x^k/k). %F A318968 G.f.: Product_{k>=1} 1/(1 - (2*k - 1)^(2*k-1)*x^(2*k-1))^(1/(2*k-1)). %t A318968 nmax = 21; CoefficientList[Series[Exp[Sum[Sum[Mod[d, 2] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] %t A318968 nmax = 21; CoefficientList[Series[Product[1/(1 - (2 k - 1)^(2 k - 1) x^(2 k - 1))^(1/(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A318968 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Mod[d, 2] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}] %Y A318968 Cf. A000009, A023881, A206303, A262811, A292919, A318969. %K A318968 nonn %O A318968 0,4 %A A318968 _Ilya Gutkovskiy_, Sep 06 2018