cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318969 Expansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).

This page as a plain text file.
%I A318969 #5 Sep 07 2018 04:47:19
%S A318969 1,0,2,9,6,643,182,118953,6019,242630,2243190,25938251679,78106516,
%T A318969 23349992199606,288964822371,46755212195033,226472341461312,
%U A318969 48661337027901364945,18066374340919781,104224677113940850317679,440728415311733637734,208546898802899685866735,972477473959172989443327
%N A318969 Expansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).
%F A318969 G.f.: Product_{k>=1} 1/(1 - prime(k)^prime(k)*x^prime(k))^(1/prime(k)).
%t A318969 nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
%t A318969 nmax = 22; CoefficientList[Series[Product[1/(1 - Prime[k]^Prime[k] x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
%t A318969 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 22}]
%Y A318969 Cf. A000607, A023881, A200768, A219224, A220427, A318913, A318968.
%K A318969 nonn
%O A318969 0,3
%A A318969 _Ilya Gutkovskiy_, Sep 06 2018