This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318991 #9 Oct 27 2018 01:08:00 %S A318991 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27, %T A318991 28,29,31,32,34,36,37,38,39,40,41,42,43,44,46,47,48,49,50,52,53,54,56, %U A318991 57,58,59,61,62,63,64,65,67,68,71,72,73,74,76,78,79,80 %N A318991 Numbers whose consecutive prime indices are divisible. Heinz numbers of integer partitions in which each part is divisible by the next. %C A318991 A prime index of n is a number m such that prime(m) divides n. %C A318991 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A318991 Andrew Howroyd, <a href="/A318991/b318991.txt">Table of n, a(n) for n = 1..10000</a> %e A318991 The sequence of all dividing partitions (columns) begins: %e A318991 1 2 1 3 2 4 1 2 3 5 2 6 4 1 7 2 8 3 4 5 9 2 3 6 2 4 %e A318991 1 1 1 2 1 1 1 1 2 1 2 1 1 3 1 2 1 %e A318991 1 1 1 1 1 1 2 1 %e A318991 1 1 %t A318991 Select[Range[100],Or[#==1,PrimePowerQ[#],Divisible@@Reverse[PrimePi/@FactorInteger[#][[All,1]]]]&] %o A318991 (PARI) ok(n)={my(v=apply(primepi, factor(n)[,1])); for(i=2, #v, if(v[i]%v[i-1], return(0))); 1} \\ _Andrew Howroyd_, Oct 26 2018 %Y A318991 Cf. A000040, A001221, A001222, A003238, A008480, A300912, A318990, A318992, A318993. %K A318991 nonn %O A318991 1,2 %A A318991 _Gus Wiseman_, Sep 06 2018