cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319000 Regular triangle where T(n,k) is the number of finite multisets of positive integers with product n and sum k.

This page as a plain text file.
%I A319000 #19 Oct 22 2018 17:42:07
%S A319000 1,0,1,0,0,1,0,0,0,2,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,0,0,1,0,0,0,0,0,2,
%T A319000 2,3,0,0,0,0,0,1,1,1,2,0,0,0,0,0,0,1,1,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,
%U A319000 0,0,0,0,2,3,3,3,3,4,0,0,0,0,0,0,0,0,0
%N A319000 Regular triangle where T(n,k) is the number of finite multisets of positive integers with product n and sum k.
%e A319000 Triangle begins:
%e A319000   1
%e A319000   0 1
%e A319000   0 0 1
%e A319000   0 0 0 2
%e A319000   0 0 0 0 1
%e A319000   0 0 0 0 1 2
%e A319000   0 0 0 0 0 0 1
%e A319000   0 0 0 0 0 2 2 3
%e A319000   0 0 0 0 0 1 1 1 2
%e A319000   0 0 0 0 0 0 1 1 1 2
%e A319000   0 0 0 0 0 0 0 0 0 0 1
%e A319000   0 0 0 0 0 0 2 3 3 3 3 4
%e A319000   0 0 0 0 0 0 0 0 0 0 0 0 1
%e A319000   0 0 0 0 0 0 0 0 1 1 1 1 1 2
%e A319000   0 0 0 0 0 0 0 1 1 1 1 1 1 1 2
%e A319000   0 0 0 0 0 0 0 3 3 4 4 4 4 4 4 5
%e A319000   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
%e A319000   0 0 0 0 0 0 0 1 2 2 3 3 3 3 3 3 3 4
%e A319000   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
%e A319000   0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 3 3 4
%e A319000 Row 12 {0,0,0,0,0,0,2,3,3,3,3,4} corresponds to the partitions (C = 12):
%e A319000 . . . . . . (43)  (62)   (621)   (6211)   (62111)    (C)
%e A319000             (322) (431)  (4311)  (43111)  (431111)   (621111)
%e A319000                   (3221) (32211) (322111) (3221111)  (4311111)
%e A319000                                           (32211111)
%t A319000 Table[Length[Select[IntegerPartitions[k],Times@@#==n&]],{n,20},{k,n}]
%Y A319000 Row sums are A319916. Column sums are A319005. Last column is A001055.
%Y A319000 Cf. A000041, A002865, A069016, A096276, A301987, A318950, A319057.
%K A319000 nonn,tabl
%O A319000 1,10
%A A319000 _Gus Wiseman_, Oct 22 2018