A319019 First differences of A319018.
0, 1, 8, 8, 40, 8, 56, 24, 120, 8, 56, 48, 240, 40, 208, 56, 280, 8, 56, 48, 240, 64, 384, 120, 568, 56, 264, 144, 688, 112, 560, 136, 648, 8, 56, 48, 240, 64, 384, 136, 648, 72, 400, 232, 1128, 200, 1048, 240, 1216, 48, 216, 160, 768, 200, 1176, 352, 1664
Offset: 0
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 0..16384 (first 2050 terms from Rémy Sigrist)
- Nathan Epstein, Gfycat animation of sequence.
- M. F. Hasler, Interactive illustration of A319018 and A319019.
- N. J. A. Sloane, Hand-drawn sketch showing terms through about the eighth shell, but using offset a(0)=1. Illustrates the octagonal "castle walls".
Programs
-
PARI
A319019_upto(N,S=[],K=[[t\5-2,t%5-2]|t<-digits(6888528048,25)])={ vector(N,n, #N=if(n>1, S=setunion(S,N); N=vecsort(concat([[Vecsmall(Vec(n)+k)|k<-K]|n<-N])); S=setunion(Set(vecextract(N, select(i->N[i-1]==N[i],[2..#N]))),S);setminus(Set(N),S),[[0,0]]))} \\ Increase stack size with allocatemem() for N > 86. - M. F. Hasler, Dec 27 2018
-
PARI
A319019(n)=sum(i=2,n,A322050(i))*8+(n>0) \\ M. F. Hasler, Dec 28 2018
Formula
Apparently, a(2^k + 1) = 8 for any k >= 0.
a(n) = 8*A322050(n) for all n > 1, see there for more formulas. - M. F. Hasler, Dec 18 2018
Comments