This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319023 #13 Sep 09 2018 12:41:44 %S A319023 1,2,3,4,5,9,8,6,7,10,27,16,14,11,12,29,81,32,20,19,13,17,18,30,31,82, %T A319023 243,64,34,24,22,21,15,23,28,39,36,47,33,84,245,729,128,66,38,25,35, %U A319023 43,45,40,54,55,49,37,88,90,246,247,730,2187,256,130,68,72,41 %N A319023 Let S be the sequence generated by these rules: 1 is in S, and if k is in S, then A057168(k) and A319021(k) are in S, and duplicates are deleted as they occur; a(n) is the n-th term of S. %C A319023 This sequence is a permutation of the natural numbers (with inverse A319024): %C A319023 - this sequence is injective, %C A319023 - this sequence is surjective: by contradiction: %C A319023 - let m be the least integer missing from the sequence, %C A319023 - as a(1) = 1, we have m > 1, %C A319023 - also, m belongs to A000225 and to A062318, %C A319023 - however the only positive integer belonging to both sequences is 1, %C A319023 - hence a contradiction, QED. %H A319023 Rémy Sigrist, <a href="/A319023/b319023.txt">Table of n, a(n) for n = 1..10000</a> %H A319023 Rémy Sigrist, <a href="/A319023/a319023.gp.txt">PARI program for A319023</a> %H A319023 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A319023 The first terms, alongside b(n) = A057168(a(n)) and t(n) = A319021(a(n)), are: %e A319023 n a(n) b(n) t(n) %e A319023 -- ---- ---- ---- %e A319023 1 1 2 3 %e A319023 2 2 4 4 %e A319023 3 3 5 9 %e A319023 4 4 8 6 %e A319023 5 5 6 7 %e A319023 6 9 10 27 %e A319023 7 8 16 14 %e A319023 8 6 9 10 %e A319023 9 7 11 11 %e A319023 10 10 12 12 %e A319023 11 27 29 81 %e A319023 12 16 32 20 %e A319023 13 14 19 16 %e A319023 14 11 13 13 %e A319023 15 12 17 18 %e A319023 16 29 30 31 %e A319023 17 81 82 243 %e A319023 18 32 64 34 %e A319023 19 20 24 22 %e A319023 20 19 21 21 %o A319023 (PARI) See Links section. %Y A319023 Cf. A000225, A057168, A062318, A319021, A319024 (inverse). %K A319023 nonn,base,look %O A319023 1,2 %A A319023 _Rémy Sigrist_, Sep 08 2018