This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319029 #14 Sep 14 2018 14:31:44 %S A319029 1,1,1,1,4,1,1,10,10,1,1,20,46,20,1,1,35,146,146,35,1,1,56,371,666, %T A319029 371,56,1,1,84,812,2290,2290,812,84,1,1,120,1596,6504,10198,6504,1596, %U A319029 120,1,1,165,2892,16080,36352,36352,16080,2892,165,1 %N A319029 Triangle read by rows: T(n,k) is the number of permutations pi of [n] such that pi has k descents and s(pi) avoids the patterns 132 and 321, where s is West's stack-sorting map (0 <= k <= n-1). %C A319029 Row sums give A319028. %H A319029 Colin Defant, <a href="https://arxiv.org/abs/1809.03123">Stack-sorting preimages of permutation classes</a>, arXiv:1809.03123 [math.CO], 2018. %F A319029 T(n,k) = T(n, n-1-k). %F A319029 G.f.: F(x,y) + x^3*y*((d/dx)F(x,y))^2, where F(x,y) = (1-x(y+1) - (1 - 2x(y+1) + x^2(y-1)^2)^(1/2))/(2xy) is the generating function of A001263. %e A319029 Triangle begins: %e A319029 1, %e A319029 1, 1, %e A319029 1, 4, 1, %e A319029 1, 10, 10, 1, %e A319029 1, 20, 46, 20, 1, %e A319029 1, 35, 146, 146, 35, 1, %e A319029 1, 56, 371, 666, 371, 56, 1, %e A319029 ... %t A319029 DeleteCases[Flatten[CoefficientList[Series[(1 - x (y + 1) - Sqrt[1 - 2 x (y + 1) + x^2 (y - 1)^2])/(2 x*y) + x^3*y (D[(1 - x (y + 1) - Sqrt[1 - 2 x (y + 1) + x^2 (y - 1)^2])/(2 x*y), x])^2, {x, 0, 10}], {x, y}]], 0] %Y A319029 Cf. A319028, A001263. %K A319029 easy,nonn,tabl %O A319029 1,5 %A A319029 _Colin Defant_, Sep 10 2018