A319040 Numbers k > 1 such that Pell(k) == 1 (mod k).
7, 17, 23, 31, 35, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 169, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 385, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599
Offset: 1
Keywords
Examples
k = 7 is in the sequence since Pell(7) = 169 = 7 * 24 + 1 == 1 (mod 7). k = 11 is not in the sequence: Pell(11) = 5741 = 11 * 522 - 1 !== 1 (mod 11). k = 35 is in the sequence: Pell(35) = 8822750406821 = 35 * 252078583052 + 1 == 1 (mod 35).
Programs
-
Maple
isA319040 := k -> simplify(2^(k-1)*hypergeom([1-k/2,(1-k)/2],[1-k],-1)) mod k = 1: A319040List := b -> select(isA319040, [$1..b]): A319040List(600); # Peter Luschny, Sep 09 2018
-
Mathematica
Select[Range[500], Mod[Fibonacci[#, 2], #] == 1 &] (* Alonso del Arte, Sep 08 2018 *)
Comments