This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319059 #27 Sep 30 2019 20:18:17 %S A319059 17,37,26,53,82,18,73,107,68,148,89,118,99,215,239,109,143,226,362, %T A319059 360,249,125,199,276,606,485,577,423,145,224,293,717,596,653,653,28, %U A319059 161,226,324,753,606,868,2098,784,63,181,251,374,766,699,1520,2526,1921,571 %N A319059 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..1, with k running over the positive integers; square array, read by antidiagonals, downwards. %e A319059 The array starts as follows: %e A319059 17, 37, 53, 73, 89, 109, 125, 145, 161, 181, 197, 217 %e A319059 26, 82, 107, 118, 143, 199, 224, 226, 251, 307, 332, 343 %e A319059 18, 68, 99, 226, 276, 293, 324, 374, 393, 557, 607, 618 %e A319059 148, 215, 362, 606, 717, 753, 766, 1207, 1304, 1322, 1371, 1451 %e A319059 239, 360, 485, 596, 606, 699, 844, 846, 995, 1330, 1371, 1451 %e A319059 249, 577, 653, 868, 1520, 1948, 1958, 2098, 2178, 2446, 2536, 2850 %e A319059 423, 653, 2098, 2526, 2889, 3180, 4270, 4400, 4625, 4755, 5416, 5531 %e A319059 28, 784, 1921, 2234, 2293, 3004, 4233, 4566, 4631, 4762, 4938, 5353 %e A319059 63, 571, 1545, 3304, 3585, 3969, 4204, 5420, 6995, 7583, 7765, 7805 %e A319059 374, 1492, 2509, 3323, 3405, 4472, 5651, 6154, 6492, 7805, 12348, 13040 %e A319059 117, 1693, 2157, 4431, 4688, 6154, 6728, 6844, 6962, 9089, 11533, 13689 %e A319059 787, 1368, 3214, 4106, 4895, 5552, 5830, 5900, 8892, 9229, 11389, 14272 %e A319059 2059, 2152, 5548, 8354, 10557, 14368, 20320, 27657, 29296, 29945, 31434, 31452 %e A319059 1085, 1771, 2210, 17902, 18793, 19679, 23670, 23676, 24298, 24928, 25885, 31800 %e A319059 655, 1586, 1914, 3330, 3818, 7772, 8765, 9436, 9459, 12087, 13183, 24501 %t A319059 rows = 10; t = 1; %t A319059 T = Table[lst = {}; b = 2; %t A319059 While[Length[lst] < rows, %t A319059 p = Prime[n + Range[0, t]]; %t A319059 If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; %t A319059 lst, {n, rows}]; %t A319059 T // TableForm (* Print the A(n,k) table *) %t A319059 Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* _Robert Price_, Sep 30 2019 *) %o A319059 (PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 1, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==2, print1(b, ", "); c++); if(c==terms, break)) %o A319059 array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) %o A319059 array(8, 10) \\ print initial 8 rows and 10 columns of array %Y A319059 Cf. A244249, A256236, A259075 (column 1). %Y A319059 Cf. analog for i = 0..t: A319060 (t=2), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7). %K A319059 nonn,tabl %O A319059 1,1 %A A319059 _Felix Fröhlich_, Sep 09 2018