This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319060 #24 Sep 30 2019 21:54:09 %S A319060 449,557,226,593,557,1207,649,901,1451,606,701,1126,2743,1371,3469, %T A319060 757,1207,2774,1451,5938,653,793,1243,3657,1667,7624,2098,5649,901, %U A319060 1324,4232,2175,11980,4755,10538,26645,1349,1549,4607,2774,12248,5845,11137,35973 %N A319060 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..2, with k running over the positive integers; square array, read by antidiagonals, downwards. %e A319060 The array starts as follows: %e A319060 449, 557, 593, 649, 701, 757, 793, 901, 1349, 1457 %e A319060 226, 557, 901, 1126, 1207, 1243, 1324, 1549, 2224, 2449 %e A319060 1207, 1451, 2743, 2774, 3657, 4232, 4607, 5176, 6682, 7251 %e A319060 606, 1371, 1451, 1667, 2175, 2774, 4244, 8201, 13543, 13670 %e A319060 3469, 5938, 7624, 11980, 12248, 13543, 17554, 20809, 23344, 24675 %e A319060 653, 2098, 4755, 5845, 24314, 24675, 25876, 30270, 39016, 40133 %e A319060 5649, 10538, 11137, 18049, 18710, 21426, 23158, 39016, 50902, 55134 %e A319060 26645, 35973, 44710, 49556, 78991, 85972, 89283, 101540, 131466, 157641 %e A319060 7805, 41854, 155349, 165407, 190906, 215029, 235210, 245586, 271376, 296832 %e A319060 6154, 18488, 65788, 104520, 136463, 178863, 263429, 335829, 394854, 399254 %t A319060 rows = 10; t = 2; %t A319060 T = Table[lst = {}; b = 2; %t A319060 While[Length[lst] < rows, %t A319060 p = Prime[n + Range[0, t]]; %t A319060 If[AllTrue[PowerMod[b, (p-1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; %t A319060 lst, {n, rows}]; %t A319060 T // TableForm (* Print the A(n,k) table *) %t A319060 Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* _Robert Price_, Sep 30 2019 *) %o A319060 (PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 2, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==3, print1(b, ", "); c++); if(c==terms, break)) %o A319060 array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) %o A319060 array(8, 10) \\ print initial 8 rows and 10 columns of array %Y A319060 Cf. A244249, A256236. %Y A319060 Cf. analog for i = 0..t: A319059 (t=1), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7). %K A319060 nonn,tabl %O A319060 1,1 %A A319060 _Felix Fröhlich_, Sep 09 2018