This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319062 #24 Sep 30 2019 21:55:35 %S A319062 19601,22049,54568,48149,57968,13543,52057,132857,101399,296449,67357, %T A319062 171793,132576,298117,3414284,84457,223568,296449,380827,4029059, %U A319062 14380864,85193,261593,338168,1096112,7040291,14461231,3727271,93493,282907,1098599,1761679 %N A319062 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..4, with k running over the positive integers; square array, read by antidiagonals, downwards. %e A319062 The array starts as follows: %e A319062 19601, 22049, 48149, 52057, 67357, 84457, 85193 %e A319062 54568, 57968, 132857, 171793, 223568, 261593, 282907 %e A319062 13543, 101399, 132576, 296449, 338168, 1098599, 1244324 %e A319062 296449, 298117, 380827, 1096112, 1761679, 2498247, 2500716 %e A319062 3414284, 4029059, 7040291, 10858059, 12249190, 17134811, 19603812 %e A319062 14380864, 14461231, 18366174, 22811283, 26295533, 33674748, 34998229 %e A319062 3727271, 27936608, 29998045, 31239565, 34998229, 45331852, 56029298 %t A319062 rows = 7; t = 4; %t A319062 T = Table[lst = {}; b = 2; %t A319062 While[Length[lst] < rows, %t A319062 p = Prime[n + Range[0, t]]; %t A319062 If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], %t A319062 AppendTo[lst, b]]; b++]; %t A319062 lst, {n, rows}]; %t A319062 T // TableForm (* Print the A(n,k) table *) %t A319062 Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* _Robert Price_, Sep 30 2019 *) %o A319062 (PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 4, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==5, print1(b, ", "); c++); if(c==terms, break)) %o A319062 array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) %o A319062 array(8, 10) \\ print initial 8 rows and 10 columns of array %Y A319062 Cf. A244249, A256236. %Y A319062 Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319063 (t=5), A319064 (t=6), A319065 (t=7). %K A319062 nonn,tabl %O A319062 1,1 %A A319062 _Felix Fröhlich_, Sep 09 2018