This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319063 #24 Oct 27 2019 11:24:33 %S A319063 132857,171793,2006776,261593,3091832,296449,618301,3420818,9654224, %T A319063 17134811,700993,3524932,11002557,23250274,36763941,997757,4108582, %U A319063 16616568,26073470,195603158,34998229,1211201,4349699,20512643,26646377,307849316,71724464 %N A319063 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..5, with k running over the positive integers; square array, read by antidiagonals, downwards. %e A319063 The array starts as follows: %e A319063 132857, 171793, 261593, 618301, 700993, 997757, 1211201 %e A319063 2006776, 3091832, 3420818, 3524932, 4108582, 4349699, 4416499 %e A319063 296449, 9654224, 11002557, 16616568, 20512643, 20950343, 21184318 %e A319063 17134811, 23250274, 26073470, 26646377, 44247410, 49287925, 49975689 %e A319063 36763941, 195603158, 307849316, 364769263, 366974980, 395009864, 428594624 %e A319063 34998229, 71724464, 124024853, 279238292, 709701384, 710808570 %t A319063 rows = 6; t = 5; %t A319063 T = Table[lst = {}; b = 2; %t A319063 While[Length[lst] < rows, %t A319063 p = Prime[n + Range[0, t]]; %t A319063 If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], %t A319063 AppendTo[lst, b]]; b++]; %t A319063 lst, {n, rows}]; %t A319063 T // TableForm (* Print the A(n,k) table *) %t A319063 Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* _Robert Price_, Oct 01 2019 *) %o A319063 (PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 5, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==6, print1(b, ", "); c++); if(c==terms, break)) %o A319063 array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) %o A319063 array(8, 8) \\ print initial 8 rows and 8 columns of array %Y A319063 Cf. A244249, A256236. %Y A319063 Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319062 (t=4), A319064 (t=6), A319065 (t=7). %K A319063 nonn,tabl %O A319063 1,1 %A A319063 _Felix Fröhlich_, Sep 09 2018