This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319066 #16 Oct 26 2018 00:51:59 %S A319066 1,1,3,5,10,14,26,35,59,82,128,176,273,371,553,768,1119,1544,2235, %T A319066 3084,4410,6111,8649,11982,16901,23383,32780,45396,63365,87622,121946, %U A319066 168407,233605,322269,445723,613922,847131,1164819,1603431,2201370,3023660,4144124,5680816 %N A319066 Number of partitions of integer partitions of n where all parts have the same length. %H A319066 Andrew Howroyd, <a href="/A319066/b319066.txt">Table of n, a(n) for n = 0..500</a> %e A319066 The a(1) = 1 through a(5) = 14 multiset partitions: %e A319066 {{1}} {{2}} {{3}} {{4}} {{5}} %e A319066 {{1,1}} {{1,2}} {{1,3}} {{1,4}} %e A319066 {{1},{1}} {{1,1,1}} {{2,2}} {{2,3}} %e A319066 {{1},{2}} {{1,1,2}} {{1,1,3}} %e A319066 {{1},{1},{1}} {{1},{3}} {{1,2,2}} %e A319066 {{2},{2}} {{1},{4}} %e A319066 {{1,1,1,1}} {{2},{3}} %e A319066 {{1,1},{1,1}} {{1,1,1,2}} %e A319066 {{1},{1},{2}} {{1,1,1,1,1}} %e A319066 {{1},{1},{1},{1}} {{1,1},{1,2}} %e A319066 {{1},{1},{3}} %e A319066 {{1},{2},{2}} %e A319066 {{1},{1},{1},{2}} %e A319066 {{1},{1},{1},{1},{1}} %t A319066 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A319066 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A319066 Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Length/@#&]],{n,8}] %o A319066 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A319066 seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ _Andrew Howroyd_, Oct 25 2018 %Y A319066 Cf. A001970, A047968, A261049, A279787, A305551, A306017, A319056. %K A319066 nonn %O A319066 0,3 %A A319066 _Gus Wiseman_, Oct 10 2018 %E A319066 Terms a(11) and beyond from _Andrew Howroyd_, Oct 25 2018