cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319070 a(n) is the area of the surface made of the rectangles with vertices (d, n/d), (D, n/d), (D, n/D), (d, n/D) for all (d, D), pair of consecutive divisors of n.

This page as a plain text file.
%I A319070 #35 Apr 29 2023 07:01:44
%S A319070 0,1,4,4,16,7,36,12,24,19,100,17,144,39,44,32,256,33,324,41,72,103,
%T A319070 484,40,160,147,108,65,784,57,900,80,152,259,228,66,1296,327,204,93,
%U A319070 1600,99,1764,137,160,487,2116,92,504,165,332,185,2704,135,388
%N A319070 a(n) is the area of the surface made of the rectangles with vertices (d, n/d), (D, n/d), (D, n/D), (d, n/D) for all (d, D), pair of consecutive divisors of n.
%H A319070 Rémy Sigrist, <a href="/A319070/b319070.txt">Table of n, a(n) for n = 1..10000</a>
%H A319070 Luc Rousseau, <a href="/A319070/a319070.png">Diagram illustrating a(10)=19.</a>
%F A319070 a(1) = 0.
%F A319070 a(p) = (p-1)^2 for p a prime number.
%F A319070 a(p^k) = (p-1)^2*k*p^(k-1) for p^k a prime power.
%F A319070 a(p*q) = 2*(p-1)^2*q + (q-p)^2 for p and q primes (p < q).
%F A319070 a(n) = (n/2 - 1)^2 + 3 if n=2*p with p a prime greater than 2.
%F A319070 a(n) = (n/p + F(p-1))^2 + p^2 - F(p-1)^2 if n = p*q, p < q primes; where F denotes the Fibonacci polynomial, F(x) = x^2 - x - 1 (see A165900).
%F A319070 For more complex factorization patterns of n, the formula depends on the factorization pattern of the sequence of divisors of n (see A191743 or A290110), e.g.:
%F A319070 a(p^2*q) = 4*p*q*(p-1)^2 + (q-p^2)^2 if 1 < p < p^2 < q < p*q < p^2*q,
%F A319070 but
%F A319070 a(p^2*q) = 2*p*q*(p-1)^2 + 2*p*(q-p)^2 + (p^2-q)^2 if 1 < p < q < p^2 < p*q < p^2*q.
%F A319070 a(n) = Sum_{i=1..tau(n)-1} (d_[tau(n)-i+1] - d_[tau(n)-i])*(d_[i+1] - d_[i]), where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n. - _Ridouane Oudra_, Oct 17 2021
%e A319070 The divisors of n=12 are {1, 2, 3, 4, 6, 12}. The widths of the rectangles from the definition are obtained by difference: {1, 1, 1, 2, 6}. By symmetry, their heights are the same, but in reverse order: {6, 2, 1, 1, 1}. The sought total area is the sum of products width*height of each rectangle, in other words it is the dot product 1*6 + 1*2 + 1*1 + 2*1 + 6*1. Result: 17. So, a(12)=17.
%t A319070 a[n_] := Module[{x = Differences[Divisors[n]]}, Plus @@ (x*Reverse[x])];
%t A319070 Table[a[n], {n, 1, 55}]
%o A319070 (PARI) arect(n, d, D) = (D-d)*(n/d - n/D);
%o A319070 a(n) = my(vd = divisors(n)); sum(k=1, #vd-1, arect(n, vd[k], vd[k+1])); \\ _Michel Marcus_, Oct 28 2018
%Y A319070 Cf. A191743, A290110 (introducing factorization patterns of sequences of divisors).
%Y A319070 Cf. A165900 (the Fibonacci polynomial).
%K A319070 nonn,look
%O A319070 1,3
%A A319070 _Luc Rousseau_, Sep 09 2018