This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319074 #26 Sep 18 2018 09:17:35 %S A319074 1,4,31,400,16105,402234,25646167,943531280,81870575521, %T A319074 15025258332150,846949229880161,182859777940000980, %U A319074 23127577557875340733,1759175174860440565844,262246703278703657363377,74543635579202247026882160,21930887362370823132822661921,2279217547342466764922495586798 %N A319074 a(n) is the sum of the first n nonnegative powers of the n-th prime. %F A319074 a(n) = Sum_{k=0..n-1} A000040(n)^k. %F A319074 a(n) = Sum_{k=0..n-1} A319075(k,n). %F A319074 a(n) = (A000040(n)^n - 1)/(A000040(n) - 1). %F A319074 a(n) = (A062457(n) - 1)/A006093(n). %F A319074 a(n) = A069459(n)/A006093(n). %F A319074 a(n) = A000203(A000040(n)^(n-1)). %F A319074 a(n) = A000203(A093360(n)). %e A319074 For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400. %o A319074 (PARI) a(n) = sum(k=0, n-1, prime(n)^k); \\ _Michel Marcus_, Sep 13 2018 %Y A319074 Main diagonal of A319076. %Y A319074 Cf. A000040, A000203, A006093, A062457, A069459, A093360, A319075. %Y A319074 Cf. A000079, A000244, A000351, A000420, A001020, A001022, A001026, A001029, A009967, A009973, A009975, A009981, A009985, A009987, A009991. %Y A319074 Cf. A126646, A003462, A003463, A023000, A016123, A091030, A091045, A218722, A218726, A218732, A218734, A218740, A218744, A218746, A218750. %K A319074 nonn %O A319074 1,2 %A A319074 _Omar E. Pol_, Sep 11 2018