cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319079 Number of connected antichains of sets whose multiset union is an integer partition of n.

This page as a plain text file.
%I A319079 #18 Oct 14 2018 09:16:40
%S A319079 1,1,2,3,4,4,8,7,12,15,19,26,43
%N A319079 Number of connected antichains of sets whose multiset union is an integer partition of n.
%e A319079 The a(10) = 19 clutters:
%e A319079   {{10}}
%e A319079   {{1,9}}
%e A319079   {{2,8}}
%e A319079   {{3,7}}
%e A319079   {{4,6}}
%e A319079   {{1,2,7}}
%e A319079   {{1,3,6}}
%e A319079   {{1,4,5}}
%e A319079   {{2,3,5}}
%e A319079   {{1,2,3,4}}
%e A319079   {{5},{5}}
%e A319079   {{1,2},{1,6}}
%e A319079   {{1,2},{2,5}}
%e A319079   {{1,3},{1,5}}
%e A319079   {{1,4},{1,4}}
%e A319079   {{2,3},{2,3}}
%e A319079   {{1,2},{1,2},{1,3}}
%e A319079   {{2},{2},{2},{2},{2}}
%e A319079   {{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}}
%t A319079 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A319079 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A319079 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A319079 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]];
%t A319079 antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
%t A319079 Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,10}]
%Y A319079 Cf. A001970, A007718, A048143, A056156, A089259, A319719, A320351, A320353, A320355, A320356.
%K A319079 nonn,more
%O A319079 0,3
%A A319079 _Gus Wiseman_, Oct 12 2018