This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319083 #35 Feb 08 2025 00:35:35 %S A319083 1,0,1,0,3,1,0,4,6,1,0,7,17,9,1,0,6,38,39,12,1,0,12,70,120,70,15,1,0, %T A319083 8,116,300,280,110,18,1,0,15,185,645,885,545,159,21,1,0,13,258,1261, %U A319083 2364,2095,942,217,24,1,0,18,384,2262,5586,6713,4281,1498,284,27,1 %N A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n. %C A319083 Column k is the k-fold self-convolution of sigma (A000203). - _Alois P. Heinz_, Feb 01 2021 %C A319083 For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - _Vaclav Kotesovec_, Sep 20 2024 %H A319083 Alois P. Heinz, <a href="/A319083/b319083.txt">Rows n = 0..200, flattened</a> %F A319083 The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by %F A319083 p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x). %F A319083 Sum_{k=0..n} (-1)^k * T(n,k) = A283334(n). - _Alois P. Heinz_, Feb 07 2025 %e A319083 Triangle starts: %e A319083 [0] 1; %e A319083 [1] 0, 1; %e A319083 [2] 0, 3, 1; %e A319083 [3] 0, 4, 6, 1; %e A319083 [4] 0, 7, 17, 9, 1; %e A319083 [5] 0, 6, 38, 39, 12, 1; %e A319083 [6] 0, 12, 70, 120, 70, 15, 1; %e A319083 [7] 0, 8, 116, 300, 280, 110, 18, 1; %e A319083 [8] 0, 15, 185, 645, 885, 545, 159, 21, 1; %e A319083 [9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1; %p A319083 P := proc(n, x) option remember; if n = 0 then 1 else %p A319083 x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end: %p A319083 Trow := n -> seq(coeff(P(n, x), x, k), k=0..n): %p A319083 seq(Trow(n), n=0..9); %p A319083 # second Maple program: %p A319083 T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), %p A319083 `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q-> %p A319083 add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A319083 end: %p A319083 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Feb 01 2021 %p A319083 # Uses function PMatrix from A357368. %p A319083 PMatrix(10, NumberTheory:-sigma); # _Peter Luschny_, Oct 19 2022 %t A319083 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], %t A319083 If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], %t A319083 With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]]; %t A319083 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 11 2021, after _Alois P. Heinz_ *) %Y A319083 Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979. %Y A319083 Row sums are A180305. %Y A319083 T(2n,n) gives A340993. %Y A319083 Cf. A008298, A078521, A283334, A319933. %K A319083 nonn,tabl %O A319083 0,5 %A A319083 _Peter Luschny_, Oct 03 2018