cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.

This page as a plain text file.
%I A319083 #35 Feb 08 2025 00:35:35
%S A319083 1,0,1,0,3,1,0,4,6,1,0,7,17,9,1,0,6,38,39,12,1,0,12,70,120,70,15,1,0,
%T A319083 8,116,300,280,110,18,1,0,15,185,645,885,545,159,21,1,0,13,258,1261,
%U A319083 2364,2095,942,217,24,1,0,18,384,2262,5586,6713,4281,1498,284,27,1
%N A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.
%C A319083 Column k is the k-fold self-convolution of sigma (A000203). - _Alois P. Heinz_, Feb 01 2021
%C A319083 For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - _Vaclav Kotesovec_, Sep 20 2024
%H A319083 Alois P. Heinz, <a href="/A319083/b319083.txt">Rows n = 0..200, flattened</a>
%F A319083 The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
%F A319083 p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x).
%F A319083 Sum_{k=0..n} (-1)^k * T(n,k) = A283334(n). - _Alois P. Heinz_, Feb 07 2025
%e A319083 Triangle starts:
%e A319083 [0] 1;
%e A319083 [1] 0,  1;
%e A319083 [2] 0,  3,   1;
%e A319083 [3] 0,  4,   6,    1;
%e A319083 [4] 0,  7,  17,    9,    1;
%e A319083 [5] 0,  6,  38,   39,   12,    1;
%e A319083 [6] 0, 12,  70,  120,   70,   15,   1;
%e A319083 [7] 0,  8, 116,  300,  280,  110,  18,   1;
%e A319083 [8] 0, 15, 185,  645,  885,  545, 159,  21,  1;
%e A319083 [9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
%p A319083 P := proc(n, x) option remember; if n = 0 then 1 else
%p A319083 x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
%p A319083 Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
%p A319083 seq(Trow(n), n=0..9);
%p A319083 # second Maple program:
%p A319083 T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
%p A319083       `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
%p A319083        add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
%p A319083     end:
%p A319083 seq(seq(T(n, k), k=0..n), n=0..10);  # _Alois P. Heinz_, Feb 01 2021
%p A319083 # Uses function PMatrix from A357368.
%p A319083 PMatrix(10, NumberTheory:-sigma); # _Peter Luschny_, Oct 19 2022
%t A319083 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
%t A319083      If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
%t A319083      With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
%t A319083 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 11 2021, after _Alois P. Heinz_ *)
%Y A319083 Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979.
%Y A319083 Row sums are A180305.
%Y A319083 T(2n,n) gives A340993.
%Y A319083 Cf. A008298, A078521, A283334, A319933.
%K A319083 nonn,tabl
%O A319083 0,5
%A A319083 _Peter Luschny_, Oct 03 2018