This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319086 #27 Oct 21 2023 17:21:52 %S A319086 1,13,49,161,311,743,1135,2095,3148,4948,6400,10432,12798,17502,22902, %T A319086 30838,36040,48676,55896,72696,86808,104232,116928,151488,170863, %U A319086 199255,228415,272319,297549,362349,393101,457613,509885,572309,631109,749045,801067 %N A319086 a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203. %C A319086 In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - _Daniel Suteu_, Nov 08 2018 %H A319086 Seiichi Manyama, <a href="/A319086/b319086.txt">Table of n, a(n) for n = 1..10000</a> %F A319086 a(n) ~ Pi^2 * n^4/24. %F A319086 a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - _Daniel Suteu_, Nov 07 2018 %t A319086 Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]] %o A319086 (PARI) a(n) = sum(k=1, n, k^2*sigma(k)); \\ _Michel Marcus_, Sep 12 2018 %o A319086 (Python) %o A319086 def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # _Chai Wah Wu_, Oct 20 2023 %o A319086 (Python) %o A319086 from math import isqrt %o A319086 def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1,s+1)))//12 # _Chai Wah Wu_, Oct 21 2023 %Y A319086 Cf. A000203, A024916, A143128. %K A319086 nonn %O A319086 1,2 %A A319086 _Vaclav Kotesovec_, Sep 10 2018