cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319089 a(n) = tau(n)^3, where tau is A000005.

Original entry on oeis.org

1, 8, 8, 27, 8, 64, 8, 64, 27, 64, 8, 216, 8, 64, 64, 125, 8, 216, 8, 216, 64, 64, 8, 512, 27, 64, 64, 216, 8, 512, 8, 216, 64, 64, 64, 729, 8, 64, 64, 512, 8, 512, 8, 216, 216, 64, 8, 1000, 27, 216, 64, 216, 8, 512, 64, 512, 64, 64, 8, 1728, 8, 64, 216, 343
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Crossrefs

Cf. A000005, A006218, A035116, A061502, A318755 (partial sums).

Programs

  • Maple
    with(numtheory): seq(tau(n)^3, n=1..100); # Ridouane Oudra, Mar 07 2023
  • Mathematica
    DivisorSigma[0, Range[100]]^3
  • PARI
    a(n) = numdiv(n)^3; \\ Altug Alkan, Sep 10 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X + X^2)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Mar 09 2023

Formula

Multiplicative with a(p^e) = (e+1)^3. - Amiram Eldar, Dec 31 2022
a(n) = Sum_{d1|n} Sum_{d2|n} tau(d1*d2). - Ridouane Oudra, Mar 07 2023
From Vaclav Kotesovec, Mar 09 2023: (Start)
Dirichlet g.f.: Product_{p prime} p^(2*s) * (1 + 4*p^s + p^(2*s)) / (p^s - 1)^4.
Dirichlet g.f.: zeta(s)^8 * Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), (with a product that converges for s=1). (End)