cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319090 Decimal expansion of C, the coefficient of n*log(n) in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

8, 2, 3, 2, 6, 5, 2, 0, 8, 2, 6, 9, 4, 8, 5, 0, 2, 0, 1, 5, 6, 8, 1, 6, 4, 5, 3, 9, 4, 7, 0, 9, 0, 4, 0, 6, 3, 0, 1, 2, 7, 3, 2, 7, 0, 3, 2, 1, 1, 4, 2, 2, 5, 0, 8, 9, 2, 5, 2, 4, 5, 7, 9, 2, 0, 8, 5, 3, 0, 3, 9, 5, 9, 7, 1, 7, 5, 5, 0, 4, 2, 1, 8, 1, 7, 0, 8, 2, 1, 3, 3, 7, 2, 4, 6, 9, 7, 7, 1, 2, 8, 2, 3, 0, 2, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.823265208269485020156816453947090406301273270321142250892524579208530395971755...
		

Crossrefs

Programs

  • Mathematica
    36*EulerGamma^2/Pi^2 - (288*Zeta'[2]/Pi^4 + 24/Pi^2)*EulerGamma + (864*Zeta'[2]^2/Pi^6 + 72*Zeta'[2]/Pi^4 - 72/Pi^4*Zeta''[2] + 6/Pi^2) - 24*StieltjesGamma[1]/Pi^2

Formula

C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994 and g1 is the first Stieltjes constant, see A082633.