cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319096 Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.

This page as a plain text file.
%I A319096 #68 Dec 24 2018 08:56:12
%S A319096 1,14,459,35312,4072108,638653285,128441726634,31872148398195,
%T A319096 9490641145219266,3321018871480028710
%N A319096 Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.
%C A319096 A maximum of n^2 nonattacking kings may be placed on a 2n X 2n chessboard.
%F A319096 a(n) = A236679(2n+1, n^2).
%e A319096 For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.
%e A319096 ------------
%e A319096 1.                  2.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   | * |   |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 | * |   | * |   |   | * |   |   | * |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 ------------
%e A319096 3.                  4.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   | * |   |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 | * |   |   |   |   |   | * |   | * |
%e A319096 |   |   |   | * |   |   |   |   |   |
%e A319096 ------------
%e A319096 5.                  6.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   | * |   |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 |   | * |   |   |   |   |   | * |   |
%e A319096 |   |   |   | * |   | * |   |   |   |
%e A319096 ------------
%e A319096 7.                  8.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   | * |   |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 |   |   |   | * |   |   |   |   |   |
%e A319096 | * |   |   |   |   | * |   | * |   |
%e A319096 ------------
%e A319096 9.                  10.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   | * |   |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 |   |   |   |   |   |   |   |   | * |
%e A319096 | * |   |   | * |   |   | * |   |   |
%e A319096 ------------
%e A319096 11.                 12.
%e A319096 _________________   _________________
%e A319096 | * |   | * |   |   | * |   |   | * |
%e A319096 |   |   |   |   |   |   |   |   |   |
%e A319096 |   |   |   |   |   |   | * |   |   |
%e A319096 |   | * |   | * |   |   |   |   | * |
%e A319096 ------------
%e A319096 13.                 14.
%e A319096 _________________   _________________
%e A319096 | * |   |   | * |   |   | * |   |   |
%e A319096 |   |   |   |   |   |   |   |   | * |
%e A319096 |   |   |   |   |   | * |   |   |   |
%e A319096 | * |   |   | * |   |   |   | * |   |
%e A319096 ------------
%Y A319096 Cf. A018807 (rotations and reflections considered distinct).
%Y A319096 Cf. A137432 (on cylindrical chessboard).
%Y A319096 Cf. A236679, A322284, A321614.
%K A319096 nonn,more
%O A319096 1,2
%A A319096 _Anton Nikonov_, Dec 21 2018
%E A319096 a(4)-a(10) from _Andrew Howroyd_, Dec 21 2018