A319097 One of the three successive approximations up to 7^n for 7-adic integer 6^(1/3). This is the 3 (mod 7) case (except for n = 0).
0, 3, 24, 122, 808, 10412, 111254, 817148, 1640691, 24699895, 186114323, 186114323, 6118094552, 6118094552, 490563146587, 2525232365134, 26263039914849, 59495970484450, 1222648540420485, 6107889334151832, 74501260446390690, 234085793041614692, 1351177521208182706, 24810103812706111000, 134285093173029776372
Offset: 0
Keywords
Examples
The unique number k in [1, 7^2] and congruent to 3 modulo 7 such that k^3 - 6 is divisible by 7^2 is k = 24, so a(2) = 24. The unique number k in [1, 7^3] and congruent to 3 modulo 7 such that k^3 - 6 is divisible by 7^3 is k = 122, so a(3) = 122.
Links
- Wikipedia, p-adic number
Crossrefs
Programs
-
PARI
a(n) = lift(sqrtn(6+O(7^n), 3) * (-1+sqrt(-3+O(7^n)))/2)
Comments