A319099 Number of solutions to x^5 == 1 (mod n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1
Offset: 1
Examples
Solutions to x^5 == 1 (mod 11): x == 1, 3, 4, 5, 9 (mod 11). Solutions to x^5 == 1 (mod 25): x == 1, 6, 11, 16, 21 (mod 25) (x == 1 (mod 5)). Solutions to x^5 == 1 (mod 31): x == 1, 2, 4, 8, 16 (mod 31).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[Mod[p, 5] == 1, 5, 1]; f[5, 1] = 1; f[5, e_] := 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
-
PARI
a(n)=my(Z=znstar(n)[2]); prod(i=1,#Z,gcd(5,Z[i]));
Formula
Multiplicative with a(5) = 1, a(5^e) = 5 if e >= 2; for other primes p, a(p^e) = 5 if p == 1 (mod 5), a(p^e) = 1 otherwise.
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(5, k_i).
Comments