cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319101 Number of solutions to x^7 == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7
Offset: 1

Views

Author

Jianing Song, Sep 10 2018

Keywords

Comments

All terms are powers of 7. Those n such that a(n) > 1 are in A066502.

Examples

			Solutions to x^7 == 1 (mod 29): x == 1, 7, 16, 20, 23, 24, 25 (mod 29).
Solutions to x^7 == 1 (mod 43): x == 1, 4, 11, 16, 21, 35, 41 (mod 43).
Solutions to x^7 == 1 (mod 49): x == 1, 8, 15, 22, 29, 36, 43 (mod 49) (x == 1 (mod 7)).
		

Crossrefs

Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), this sequence (k=7), A247257 (k=8).
Mobius transform gives A307382.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 7] == 1, 7, 1]; f[7, 1] = 1; f[7, e_] := 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
  • PARI
    a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(7, Z[i]))

Formula

Multiplicative with a(7) = 1, a(7^e) = 7 if e >= 2; for other primes p, a(p^e) = 7 if p == 1 (mod 7), a(p^e) = 1 otherwise.
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(7, k_i).
a(n) = A000010(n)/A293484(n). - Jianing Song, Nov 10 2019