This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319103 #12 Sep 22 2018 12:14:43 %S A319103 1,3,2,4,11,18,75,621,9638,1264052,1294752365,20699153586797, %T A319103 43409394810283725529 %N A319103 a(n) is the least k > 0 such that A318928(k) = n. %C A319103 This sequence is well defined and infinite: %C A319103 - for any n > 1, we can build a number m such that A318928(m) = 1 + A318928(n), %C A319103 - let (b_1, ..., b_k) be the binary representation of n, %C A319103 - let r_1 = 1, and for i = 1..k-1: r_{i+1} = r_i if b_{i+1} = b_i and r_{i+1} = 2 - r_i otherwise, %C A319103 - the number m whose run lengths in binary representation are (r_1, ..., r_k) satisfies A318928(m) = 1 + A318928(n). %C A319103 a(11) <= 42414573279593. %C A319103 Here A318928(1) is considered to be 0, which differs from the current definition of A318928. However, I think it is quite natural to define A318928(1) to be 0. - _Hiroaki Yamanouchi_, Sep 22 2018 %H A319103 Rémy Sigrist, <a href="/A319103/a319103.gp.txt">PARI program for A319103</a> %e A319103 The first terms of A318928, alongside the corresponding terms in this sequence, are: %e A319103 n A318928(n) Corresponding terms %e A319103 -- ---------- ------------------- %e A319103 1 0 a(0) = 1 %e A319103 2 2 a(2) = 2 %e A319103 3 1 a(1) = 3 %e A319103 4 3 a(3) = 4 %e A319103 5 2 %e A319103 6 3 %e A319103 7 1 %e A319103 8 3 %e A319103 9 3 %e A319103 10 2 %e A319103 11 4 a(4) = 11 %e A319103 12 2 %e A319103 13 4 %o A319103 (PARI) See Links section. %Y A319103 Cf. A318928. %Y A319103 See A319417, A319418 for record values in A318928. %K A319103 nonn,base,more %O A319103 0,2 %A A319103 _Rémy Sigrist_, Sep 10 2018 %E A319103 a(11)-a(12) from _Hiroaki Yamanouchi_, Sep 22 2018