cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319105 Expansion of e.g.f. Product_{k>=0} 1/(1 - x^(2^k))^(1/2^k).

This page as a plain text file.
%I A319105 #4 Sep 12 2018 15:05:48
%S A319105 1,1,3,9,51,255,1845,12915,129465,1165185,13338675,146725425,
%T A319105 2023126875,26300649375,405966485925,6089497288875,110674075136625,
%U A319105 1881459277322625,36921598987147875,701510380755809625,15370603498046671875,322782673458980109375,7608990209632029343125,175006774821536674891875
%N A319105 Expansion of e.g.f. Product_{k>=0} 1/(1 - x^(2^k))^(1/2^k).
%F A319105 E.g.f.: exp(Sum_{k>=1} A001511(k)*x^k/k).
%t A319105 nmax = 23; CoefficientList[Series[Product[1/(1 - x^2^k)^(1/2^k), {k, 0, Ceiling[Log[2, nmax]]}], {x, 0, nmax}], x] Range[0, nmax]!
%t A319105 nmax = 23; CoefficientList[Series[Exp[Sum[(IntegerExponent[k, 2] + 1) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
%t A319105 a[n_] := a[n] = (n - 1)! Sum[(IntegerExponent[k, 2] + 1) a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
%Y A319105 Cf. A001511, A018819, A028342.
%K A319105 nonn
%O A319105 0,3
%A A319105 _Ilya Gutkovskiy_, Sep 10 2018