A319119 Number of multimin tree-factorizations of Heinz numbers of integer partitions of n.
1, 3, 9, 37, 173, 921, 5185, 30497, 184469, 1140413, 7170085, 45704821
Offset: 1
Examples
The a(3) = 9 multimin tree-factorizations: 5, 6, 8, (2*3), (2*4), (4*2), (2*2*2), (2*(2*2)), ((2*2)*2). Or as series-reduced plane trees of multisets: 3, 12, 111, (1,2), (1,11), (11,1), (1,1,1), (1,(1,1)), ((1,1),1).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n]; Table[Sum[Length[mmftrees[k]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,7}]
Extensions
a(11)-a(12) from Robert Price, Sep 14 2018
Comments