A319121 Number of complete multimin tree-factorizations of Heinz numbers of integer partitions of n.
1, 2, 5, 18, 74, 344, 1679, 8548, 44690, 238691, 1295990, 7132509
Offset: 1
Examples
The a(3) = 5 trees are: 5, (2*3), (2*2*2), (2*(2*2)), ((2*2)*2). The a(4) = 18 trees (normalized with prime(n) -> n): 4, (13), (22), (112), (1111), (1(12)), ((12)1), ((11)2), (11(11)), (1(11)1), ((11)11), (1(111)), ((111)1), ((11)(11)), (1(1(11))), (1((11)1)), ((1(11))1), (((11)1)1).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n]; Table[Sum[Length[Select[mmftrees[k],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]
Extensions
a(11)-a(12) from Robert Price, Sep 14 2018
Comments